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Restoration of cross-sections through unfaulted, variably strained strata
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Abstract—Data on the dip of bedding and the state of strain at specific locations within a cross-section constrain
the restoration of unfaulted, two-dimensional, variably strained strata. There are two major categories for
restoration of such strata. The first is one-step restoration, which involves retro-deforming the strain ellipses into
their corresponding unit circles while simultaneously removing dips from associated beds. This procedure is
appropriate if strain indicators record the transformation of the strata from the undeformed state to present
deformation. The second category pertains to situations in which strain indicators record the transformation of
the present deformed state from an intermediate, deformed state. The second category requires multiple step
restoration.

For the one-step restoration procedure presented in this paper, the first task is to determine the transformation
constants that describe development of observed strain and bedding for each location. The next task is to
determine the retro-deformation constants which relate points in their present deformed state to their locations
in the undeformed state. Retro-deformation constants are related to the spatial derivatives of the Cartesian retro-
deformation displacements functions, U*(x,y) and V*(x,y) (for movements in the x and y directions, respect-
ively). The spatial derivatives of these functions at locations of observed strain and the displacements of selected
points about these sites are the basis for constructing continuous, retro-deformation displacements functions for
the deformed section as a whole. The retro-deformation displacements functions are then invoked to restore the
cross-section.

This procedure is illustrated with an example cross-section from the Appalachian Fold Belt, and the example
shows that the section may be satisfactorily restored in this way.

It is just as likely, however, that the strain indicators for the example section are a measure of the
transformation of the cross-section from a prior, deformed state to the present deformation. Accordingly,
multiple-step restoration is required, first to an intermediate, less deformed state and then to the undeformed
state. Two sets of retro-deformation displacement functions are then needed, i.e. one set for transformation to an
intermediate state followed by a second to the undeformed state. This procedure was done for the Appalachian
fold~thrust belt example, restoring first the present deformed section to an intermediate state derived from the
regional fold history. In turn, intermediate state points were transformed to an undeformed state assuming
knowledge of an undeformed stratal thickness and assuming that cross-sectional arca has been preserved. This
procedure is technically different to that used in the one-step procedure, but conceptually similar. The objective,

once again, is to discover appropriate retro-deformation displacements functions.

INTRODUCTION

Tuis paper describes one-step and multi-step pro-
cedures for restoration of unfaulted, variably-strained
cross-sections. The one-step procedure is described first
and is appropriate if strain indicators record the trans-
formation of the strata from the undeformed state to
present deformation. The second procedure requires
multiple-step restoration and pertains to situations in
which strain indicators record the transformation of the
present deformed state from an intermediate, deformed
state. An example cross-section from the Appalachian
fold—thrust belt illustrates both procedures. The
example shows that the section may be satisfactorily
restored with either procedure. However, the interpre-
tation assigned to the strain indicators differs. For the
one-step procedure, observed strains are interpreted as
a measure of transformation from an undeformed state.
For the multi-step procedure, they record transform-
ation from an intermediate state of deformation.

GIVEN INFORMATION AND ASSUMPTIONS

We are given a deformed geologic cross-section, with-
out vertical exaggeration, within a scaled Cartesian

ellipses
with axial
ratio

Fig. 1. Sample geologic cross-section. No vertical exaggeration. The
strain ellipses provide information at various locations within the
cross-section on ratios of principal strains and their orientation in
present deformation. Note dip of bedding. After fig. 2(a) of Wood-
ward et al. (1986), based on prior work by Reks & Gray (1983).

system (Fig. 1). Relative values of strain at points within
the cross section are shown graphically by a set of strain
ellipses posted at points on the section (Fig. 1).

We assume that strains are homogeneous about a
point and that they vary smoothly from point to point.
We also assume that prior to any deformation all bed-
ding planes were horizontal and continuous.
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SOLUTION FOR LOCAL RESTORATION OF
STRAINS AND BEDDING

Assuming that observed strains record the transform-
ation of the section from an undeformed state to the
present deformation, the procedure begins with resto-
ration of strains and bedding locally, i.e. at points of
observed strain and their vicinity within the cross-
section. The subsequent task involves integration of
local restorations in order to restore the cross-section as
a whole.

Definitions and symbols

Table 1 lists definitions and symbols involved in the
analysis. Figure 2 illustrates the meaning of these defi-
nitions.

The transformation constants of finite homogeneous
strain, a,b,c and d are fundamental to the analysis. They
relate the Cartesian co-ordinates of a point in its unde-
formed state (x,y) to its position in the present defor-
mation (x', y'):

(1
)

x'=ax+ by

y =cx +dy.

o (Cosane)

o' + I1/2

82

Fig. 2. Key definitions and their symbols. The unit circle is trans-
formed into a strain ellipse describing the present deformation. Bed-
ding, which was originally horizontal, now lies at and angle y to the +x
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Overview of the solution

The solution to the first part of this procedure, which
we refer to as ‘local analysis’, consists of a series of tasks.
The first is determination of the size of the strain ellipse
in terms of units of radii of the unit circle. The second is
determination of values for two of the transformation
constants for deformation by comparing the intersection
of bedding and the strain ellipse in present deformation
with the intersection of bedding and the unit circle
before any deformation, i.e. when bedding was flat. The
third task is determination of the remaining two trans-
formation constants for deformation (a) from infor-
mation on the relative size of the strain ellipse vs the unit
circle from which it was transformed and (b) from the
orientation of the strain ellipse itself. The next task is
determination of values for those transformation con-
stants that will restore deformed points to their un-
deformed positions; these are the retro-deformation
transformation constants. Next is determination of the
spatial gradients of the retro-deformation displacements
functions appropriate to the vicinity of the point; they
depend on the retro-deformation transformation con-
stants. The final step regarding local restoration is con-
struction of retro-deformation displacements functions
locally.

Relative size of the strain ellipse

The areal size of the strain ellipse relative to the unit
circle from which it was transformed provides key infor-
mation for determining the transformation constants
involved in the restoration. There are a number of
possibilities for relating size of the unit circle to size of its
corresponding strain ellipse. However, we will make the
very simple assumption that the area of unit circle equals
the area of the strain ellipse, i.e. r* = 7 AB. Then, in
order to obtain values for the lengths of the axes of the
ellipse in terms of radii of the unit circle:

A= V(R)
B = V(1/R).

3
“4)

Assuming that the area of the ellipse is equal to the
area of the unit circle from which it has been trans-
formed, the polar radius in the direction @ of the strain

axis.
Table 1. List of symbols and their definitions
Symbol Definition Comment
a’,a' + /2 Orientation of a semi-axis of a particular strain ellipse Measured counter-clockwise from the +x axis
A.B Major and minor semi-axes of a strain ellipse, respectively
R Ratio of the major to minor axes of the strain ellipse R=1
y Angle of bedding in cross-section at point of strain ellipse Angles reckoned from the +.x axis. Angles measured clockwise
are negative
6 Angle between radius of ellipse and a semi-axis of the ellipse
Po Length of a radius of the strain ellipse at angle 8.
ab,cd Transformation constants of finite homogeneous strain See equations (1) and (2)
a* . b* c*.d* Retro-deformation transformation constants of strain See equations (17) and (20)
X,y Cartesian co-ordinates of a point in its undeformed condition See equations (1) and (2)

x'y' Cartesian co-ordinates of a point in present deformation

See equations (17) and (20)
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Fig. 3. Tllustrative specific example (element 6). Example shows the

transformation of a point at the intersection of bedding and the unit

circle to the point of intersection of bedding and the strain ellipse in the
present deformation.

ellipse with semi-axes A and B, respectively, is given by
(e.g. Hodgman 1959):
2 _ (A’B%)
i (A%sin” 6 + B%cos® 6)’

()

pq is always positive.

In the present deformation, the co-ordinates of a
point on the strain ellipse at angle 6 in Cartesian co-
ordinates with origin at the center of the ellipse are x’, y’
(see Fig. 3). In terms of y, the angle between the +x axis
and a radius of the ellipse which lies at angle 6 to a semi-
axis, the values x’ and y’ are given by (Fig. 3):

X' =cosy py (6)
y' =siny p. M

For the specific example in Fig. 3, a semi-axis of the
strain ellipse makes an angle, ', of 9° with the +x axis
and the angle 8 between a semi-axis and a line rep-
resenting present-day bedding is 45°. The angle v, there-
fore, is 54°. For this specific example, according to
equations (3) and (4), A = 1.581 and B = 0.632,
respectively. The length, p,, of the radius of the ellipse
in this direction in terms of unit circle radii is, according
to equation (5), 0.828. The co-ordinates of the intersec-
tion of bedding with the strain ellipse are thus from
equations (6) and (7), x’ = 0.489 and y’ = 0.668 unit
circle radii. We use this information to obtain values for
two of the transformation constants, a and c.

Determination of a and c from intersection of bedding
and strain ellipse

As a consequence of the movement of points to the
present deformation from their prior positions, a point
originally at the intersection of bedding and the unit
circle must have moved to a new location, namely at the
intersection of bedding and the strain ellipse. Further-

S6 15:11-E
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more, for this particular point, in terms of unit circle
radii,x=1and y = 0.
Hence, from equations (1) and (2),

a(l) = x' (1)
)=y’ 29
with co-ordinates given in terms of unit circle radii. For

the specific example shown in Fig. 3, the transformation
constants are @ = 0.489, ¢ = 0.668.

Determination of b and d from the relative size of the
strain ellipse and its orientation

The remaining two transformation constants, b and d,
are obtained from information on the relative size of the
strain ellipse vs the unit circle from which it was trans-
formed and from the orientation of the strain ellipse
itself. Two equations and two unknowns are involved
(Jaeger 1956, pp. 25 and 28):

AB =ad - bc

2(ac+bd)
(@+b* - —dd)

(8)
®

tan2a’ =

Equations (1) and (2') can be combined with
equations (8) and (9) to yield an expression for the
transformation constant b in quadratic form.

p = (Kb % (K — 4K,K)'?)

10
CK,) 1)
The angle @’ is known. Let T = tan 2a’, then
2TABc 2AB
K,= - -— 11
b= ()
K=1-TC_% (12)
4 & a
2p2
K.=Ta* — T - TAZB — 2ac. (13)
a

Inasmuch as b is now known, the transformation
constant d can be determined from (8):

&)

In fact, there are two sets of values for b and for d,
owing to the choice of signs in equation (10). The
practical solution for identifying correct values is to
determine the location of the point 0,1 unit-radii of the
unit circle. The correct choice for transformation con-
stants will move this point onto the strain ellipse in the
present deformation.

Cross checks on values for the transformation constants

Several cross checks can be used to confirm that the
transformation constants have been correctly deter-
mined. First, the value (ad — bc) should equal the
product of the semi-axes, AB (Jaeger 1956, pp. 25 and
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28). For the special case in which the area of the strain
ellipse is equal to the area of the unit circle, ad — bc
equals 1. Second, the radii of the unit circle that are
transformed into the principal axes of the strain ellipse in
the present deformation should now extend at angles, a’
and o' + #/2. The latter cross check requires determi-
nation of the angle, «, the angle made by these radii of
the unit circle prior to present deformation. The angles a
(and a — 7/2) also are functions of the transformation
constants (Jaeger 1956, p. 26):

2(ab + cd)

@+ —d%) (14)

tan 2a =

Having found a (and therefore a + 7/2), it is necess-
ary to determine the point of intersection of these radii
with the unit circle and obtain values for their Cartesian
co-ordinates. In turn, these co-ordinates are trans-
formed to the present deformation. The radii of the
ellipse passing through these transformed points should
lie at angles @’ and a’ + 7/2.

Determination of the retro-deformation constants

A set of transformation constants exists that will
restore the deformed points to their original positions.
They are here referred to as the retro-deformation
transformation constants and denoted a*, b*, ¢* and d*.
Equations (1) and (2) involve the transformation con-
stants, a, b, ¢, and d, which are now known. These
equations may be combined and rearranged to yield an
expression for the Cartesian co-ordinates of a point prior
to present deformation, namely (x,y). Now, however,
co-ordinates prior to present deformation will be given as
a function of co-ordinates in the present deformation
(x',y") and a set of retro-deformation transformation
constants. With /> = ad — bc, algebraic rearrangement
yields:

dx' by’

x= - 7}% (15)

—cx'  ay’
o (16)

Hence, by analogy with equations (1) and (2),

a* = din’ a7
b* = —b/h? (18)
c* = —clh? (19)
d* = alh?®. (20)

Ifh* =1, thena* =d.b* = —b,c* = —cand d* = a.

Relationship of transformation constants to
displacement functions

The difference in position of a point within a fixed
reference frame in a prior reference state (x,y) and in its
present state (x',y’) is its total displacement. For the
transformation of a point from its present deformed
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state to a prior state, the components of total displace-
ment in the x and y Cartesian co-ordinate directions are
u* and v*, respectively:

u*=x'=x

(21)

vi=yl —y. (22)

The functions that describe the displacements of all
points in a body transformed from present deformation
to a prior state are U*(x,y) and V*(x,y) for displace-
ments in the x and y directions, respectively. These may
be referred to as the ‘global’ displacements functions. It
can be shown, furthermore, that the following relation-
ships exist between the retro-deformation constants and
the derivatives of the displacements functions associated
with retro-deformation (Howard 1968a):

a* =1+ 0U*(x,y)/ox (23)
b* = oU*(x,y)/0y (24)
¢t = oV*{(x,y)ox (25)
d* =1+ oV*(x,y)oy. (20)

Thus, if a*, etc, are known at a point, we can compute
values for dU*/dx, etc., appropriate to the points where
values of a*, etc., apply.

Summary

We summarize our analysis of this procedure to this
point as follows. If we know the state of strain and the
attitude of bedding locally in present deformation, we
can restore to an undeformed, flat-bedded state. We can
determine the transformation constants a, b, ¢ and d,
and, then, the retro-deformation constants, a*, b*, c*
and 4*. Furthermore, owing to the relationships in
equations (23)—(26), we can locally constrain the form of
the retro-deformation displacements functions, U*(x,y)
and V*(x,y). These functions must yield local deriva-
tives consistent with calculations from equations (23)-
(26).

RETRO-DEFORMATION AND ASSEMBLY OF
INDIVIDUAL ELEMENTS

Pertinent information

Figure 1 (taken from fig. 2a in Woodward et al. 1986)
will be used to illustrate local restoration. By ‘local
restoration’ we mean restoration of each of the elements
shown on Fig. 1. Figure 4 shows these elements more
clearly, and they have been numbered 1-8. Table 2 lists
key parameters associated with each of these elements.
Figure 4 is based on fig. 5 in Woodward et al. (1986).
Table 2 also lists co-ordinates for the corner points of
these elements. Corner points are listed clockwise be-
ginning at upper left-hand corner point of each element.
They are reported with respect to a conveniently chosen
origin as shown in the lower left-hand side of Fig. 4(a).
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Restoration and assembly of individual elements of the
cross-section

Local values for the derivatives of the retro-
deformation displacements functions are key to the
restoration of the cross-section as a whole. In this
section, we present a method of restoration similar to
Woodward et al. (1986, their fig. 5b). However, in our
restoration, bedding at the bottom of the elements is
required to be flat and continuous. For each element, we
set up a local co-ordinate system with origin placed
midway along the base of the element. We assume, for
now (see below), that the displacements functions are
planar over the extent of each element, i.e. that the
spatial gradients of the functions are constant and that
strain is homogeneous within each element. We inte-
grate the derivatives dU*(x,y)/0x, etc., and set the
constant of integration equal to zero. Thus, we can
determine the displacements of the corner points of each
element by setting the increments, dx, etc., from local
origins to all corners equal to the x and y distances from
the origin to each corner. This procedure defines an
approximate shape for the element prior to defor-
mation. We may subsequently join each of the restored
elements along their bases to yield the cross-section

a)

Global reference
point

R

Fig. 4. Elements of the sample cross-section. (a) Elements, idealized

and simplified, of a deformed example cross-section with scale. The

positions of the corners of the eight elements that make up the cross-

section can be stated in terms of a convenient origin (lower left).
(b) An exploded view of the individual elements.
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shown in Fig. 6. This restoration may be compared with
Fig. 5 (Woodward et al. 1986, their fig. 5a). Obviously,
there are mismatches of adjacent restored elements
because mismatches between neighboring elements
were not taken into account except along their bases.
Mismatches can be eliminated by constructing continu-
ous functions as explained in the following section.

CONSTRUCTION OF CONTINUOUS FUNCTIONS
AND RESTORATION OF WHOLE CROSS-
SECTIONS

Integrating elements to yield continuous functions

Our procedure in this paper for constructing continu-
ous functions involves two main sets of calculations. The
first concerns calculation of values of displacement for
the bases of all elements with respect to a single, fixed
point within the cross-section. The second concerns
calculation of the trend of constant values for the retro-
deformation displacements functions midway along the
base of each element for all the elements. The first
calculation determines the magnitudes of the displace-
ment of selected points of the cross-section relative to a
single fixed point. The second calculation provides infor-
mation about the trend of lines of equal magnitude of
U*(x,y) and of V*(x,y). In other words, the second
calculation determines the orientation of iso-
displacement lines. Together, this information provides
the basis for interpolating continuous functions. In geo-
logic terms, our problem is analogous to using elevation
and strike and dip readings at separate points on a
continuous surface to construct a structure contour map
of the surface. Here, however, we wish to determine
‘contour maps’ of the functions U*(x,y) and V*(x,y).
Such maps will allow us to read specific values of u* and
v* at all points within the cross-section and thus bring
about a restoration.

In order to carry out these calculations, we define an
indexing system for tracking points. The indexing sys-
tem uses a pair of numbers (i.e. M,N) to identify points
on the cross-section. This pair is used to tag various
items of information including values for the functions
U* and V* at selected points of the cross-section. The
first number refers to the element; the second number

Table 2. List of values for certain key parameters for elements of the cross-section. Included are element number, R, v, @', 8 and co-ordinates of
corner points of each element with respect to the convenient origin shown in Fig. 4

Element

No. R y o 7] X1* Y1 X2 Y2 X3 Y3 X4 Y4
1 1.5 —52.43145226 —6 —46.4315 0.1 2.05 0.58 1.54 0.50 1.07 0.00 1.72
2 1.7 —48.57637541 -14 —34.5764 0.58 1.54 1.05 1.09 0.95 0.56 0.5 1.07
3 37 —42.43626563 -5 —37.4363 1.05 1.09 1.39 0.84 1.3 0.24 0.95 0.56
4 22 —35.21762272 -16 -19.2176 1.39 0.84 1.64 0.72 1.64 0 1.3 0.24
5 3 0 3 -3 1.64 0.72 1.71 0.73 1.8 0 1.64 1]
6 2.5 53.78120816 9 44.78121 1.71 0.73 2.27 1.18 2.32 0.71 1.8 0
7 1.7 56.30998004 3 53.30998 2.27 1.18 2.72 1.7 2.74 1.34 2.32 0.71
8 1.3 59.48981284 4 55.48981 2.72 1.7 3.07 2.22 3.07 1.9 2.74 1.34

*Measured in km; with respect to convenient origin.
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Fig. 5. Simplified version of Fig. 1. (a) Elements of the cross-section

in the present deformation as proposed by Woodward et al. (1986),

based on prior work by Reks & Gray (1983). Numbers refer to values

for the ratio of major/minor radii of the ellipse; cf. Figs. 1 and 4.

(b) Restoration proposed by Woodward et al. (1986), based on prior
work by Reks & Gray (1983).

refers to a particular corner point of the element. The
corners are numbered clockwise with the first point (1)
taken at the upper left of a quadrilateral element. For
example, x(M,N) refers to the location within a refer-
ence frame of the Nth point in the Mth element.
u*(M,N) refers to the retro-deformation displacement
in the x direction of the Nth point in the Mth element.
From calculations explained above, we know the
displacements required for retro-deformation of the
corners of each element with respect to a local origin set
midway along the base of each element. We specify the
lower left-hand corner of element 1 as the fixed point
from which all displacements of all elements will be
reckoned. This point is the global reference point on Fig.
4. In terms of the indexing scheme, this point is (1,4)
(i.e. first element, fourth point of the quadrilateral).
The origin of each of the elements is:

= X(M3) ~ x(M.4)

J. H. Howarp

Lo Y(MA) ~ y(M3)

5

(28)

Our procedure for adjusting displacements to the
global reference point involves repetitious shifts of local
origins and corner points along the base of an element for
each element. We assure continuity among elements by
requiring continuity along the base of the elements and
by drawing the functions elsewhere guided by values
along the baseline and by iso-displacements line (see
below).

In order to restore element 1 with respect to the local
origin, the point 1,4 was to be displaced an amount
u*(1,4). However, if point (1,4) is to remain fixed, we
must now add a displacement [—u*(1,4)], to it. The
result is zero, which is appropriate because we wish the
point (1,4) to be a fixed global reference point from
which all other displacements are reckoned. Likewise,
we must add [-u*(1,4)] to the displacement of the
origin. Its displacement in the x direction had been zero
as a consequence of the manner of integrating the
derivatives of U®(x,y). Now, with respect to the
global reference point, this displacement becomes
0+ [~u*(1,4)]. Similarly, the value for displacement in
the x direction of the point (1,3) had been »*(1,3). With
respect to the global reference point, this displacement
becomes #*(1,3) + u*(1,4).

The same procedure is applied in order to determine
values of displacement in the y direction. With respect to
the global reference point, v*(1,4) becomes zero. The
displacement of the origin is adjusted to [—v*(1,4)].
v*(1,3) is adjusted to v*(1,3) + v*(1,4).

A complication arises as adjacent elements are joined.
Point 3 of the first element (1,3) and point 4 of the
second element (2,4) are the same point. Consequently,
when displacements for the second element are shifted
to give displacements relative to the fixed point, they
must be done with respect to point (M,3) of the prior
element. For example, the displacement of point (2,4) in
the x direction, namely u*(2,4), must equal u*(1,3).
Displacement in the x direction of the local origin of the

27) second element must take into account displacement
2 with respect to the point (2,4) within the framework of
Base of the section is held continuous
and horizontal
/
/
/ Local ]
/ origins
/ 1km
/
/
Lt | [ N : ; #
-~
-~ 1 msé 8

Fig. 6. Piecemeal restoration of the cross-section shown in Fig. 1 using restored versions of the elements shown in Fig. 4.

The base of each element has been flattened and joined graphically with bases of adjacent clements to produce a flat,

continuous basal line for the cross-section as a whole. Compare with Fig. 5. Note mismatches of adjacent elements at
locations away from basal line. The dashed, horizontal line is taken as the approximate top of the formation.
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U* (x,y)

Global reference point

Convenient origin

Fig. 7. The function U*(x, y) superimposed on an outline of the elementai version of the deformed cross-section (Fig. 4a).
Note global reference point. Magnitudes of displacements along the base of the cross-section and the trends of iso-
displacement lines at mid-points along the base of the elements were used to construct the function. The heaviest weight
lines, labeled with values in multiples of 500 m, are iso-displacements lines for displacements in the x direction. The largest
displacement called for by the restoration in the x direction is, for example, more than 2500 m.

that element. It must also, therefore, take into account
displacement with respect to the global reference point
as dictated by the fact that the point (1,3; adjusted) and
(2,4) are the same. Thus, with u*(2,4) as the displace-
ment in the x direction of point (2,4) with respect to the
origin of second element, the origin of the second
element must now be displaced an amount equal to
[-u*(2,4) + 0 + u*(1,3)] for the displacement to reflect
the choice of the global reference point. The displace-
ment in the x direction of point (2,3) with respect to the
global reference point is [~u*(2,4) + u*(2,3) +
u*(1,3)].

In this manner, displacement of all points in both the x
and y directions are adjusted along the base of the cross-
section. Results are shown in Figs. 7 and 8. Magnitudes

of adjusted displacements are posted along the base of
the cross-section.

The determination of iso-displacement lines for the
function U*(x,y) is based on calculated values for
OU*(x,y)/6x and 6U*(x,y)/0y at the midpoint of the
baseline for each element (equations 23-26). A local
orientation for a contour of equal values of the displace-
ments function can be obtained by noting that 6U*(x,y)/
Ox is the rate of change in the function U*(x,y) in the x
direction. It is the local ‘apparent dip’ of the function in
the x direction. Similarly, dU*(x,y)/dy is the rate of
change in the function U*(x,y) in the y direction, i.e. its
‘apparent dip’ in the y direction. From the ‘apparent
dips’ of the function in two directions normal to each
other (Ragan 1973, p. 4), one can compute the azimuth

i V* (x,y)
l V=0
' /
N |
; N e e /v
N Ny, [vesoo /T /
: I, \\ = 1000 ( 380 1km
N )
| 650 '\ N @ (4 V = 500
| ~N
I )/ \I " -n‘ p .
I 1160 | loto M
| )( I /
| 1480 )/; 1l =

0 degrees

Fig. 8. The function V*(x, y) superimposed on an outline of the elemental version of the deformed cross-section.
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and magnitude of maximum change in these functions
(i.e. ‘true dip’). Trend (‘strike’) lines lie at right angles to
such azimuths. They provide the basis for drawing the
iso-displacement lines.

Similar reasoning applies to the determination of the
iso-displacement lines for the function V*(x,y). Figures
7 and 8 show trend lines posted where calculated,
namely at the local origin for each element. They guide
construction of iso-displacement lines as shown on these
two figures.

Construction of the continuous displacements functions

We may now proceed to construction of continuous
displacements functions. Construction is analogous to
construction of a contour map. From information posted
on magnitudes for displacements values and about
trends of iso-displacement lines along the base of the
elements, we may graphically construct lines of equal
value of displacement for u* and v*. Figures 7 and 8
show iso-displacement lines. First-pass construction of
these figures (i.e. Figs. 7 and 8) leads to a satisfactory
restoration (Fig. 9, next section).

The usual problems of constructing a contour map
from limited data likewise affect the graphical construc-
tion of displacement functions. A comprehensive dis-
cussion of possible techniques for construction of
displacements functions, were it included in this article,
would be similar to a discussion of the construction of a
subsurface contour map from limited data. Different
workers might well produce different ‘maps’. However,
information treated as control must be honored, and
consequences of construction must pass certain tests.
Our control included the displacements of selected
points at the base of the elements and, also, the trend of
the functions at the midpoints of the bases of the ele-
ments. Our construction, furthermore, passed an im-
portant test: it leads to a geologically reasonable
restoration.

A particular complicating problem in constructing the
displacements functions was minimized in our example,
however. The problem is the assurance of continuity and
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compatibility for the displacements of points that make
up the system of restored elements. Figure 6, for
example, showed both gaps and overlaps, i.e. disconti-
nuity and incompatibility. Continuity requires that there
be no gaps between points of the system of elements.
Compatibility requires that no two points move to the
same location within the reference frame. We avoided
this problem in our example by constructing continuous
functions for the restoration of the system of elements
based on control along the bases of the elements only
and knowledge that the upper surfaces of the elements,
when restored, had to be continuous and compatible.
Both these conditions would be satisfied at the upper
surface of the elements by a set of continuous displace-
ments functions pertinent to that area. Problems of
compatibility and continuity arise in restorations using
complex systems of finite elements (e.g. Cobbold 1979)
as discussed later in this paper. Because our procedure,
for the particular example, led to a satisfactory result we
did not pursue alternatives dealing with the upper sur-
faces of the elements. There are, however, opportuni-
ties for additional research on this topic.

USE OF DISPLACEMENTS FUNCTIONS TO
EFFECT RESTORATIONS

Retro-deformation of the entire cross-section can now
be done by applying the displacements functions shown
in Figs. 7 and 8 to the deformed cross-section. Corner
points of all the elements are retro-deformed as shown in
Fig. 9. The base of the cross-section is restored to a
continuous, horizontal state. The top of the restored
cross-section is continuous but not quite flat, as shown
by the dashed horizontal line. Perfect flatness could
have been realized by slightly recontouring the displace-
ments function V*(x,y) (Fig. 8). A shift downward of
the 1000 m contour would result in a smaller displace-
ment of the upper corners of element 5, in particular,
and lead to a flatter upper surface. Likewise, some
redrawing of the 0 (zero) contour could be done to bring
the right-hand side of the upper surface of the resto-
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Fig. 9. Restoration of the cross-section based on continuous displacements functions shown in Figs. 7 and 8. Note the
displacement of corner 2 of element 2, point (2,2) as well as point (7,3).
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ration upward. First-pass constructions of U* and V*
were done as a subsurface geologist would draw a
contour surface with available control. However, it is
reasonable, in view of available control, to adjust the
contour map in order to yield a more acceptable geologi-
cal result.

COMPARISON OF DISPLACEMENTS ANALYSIS
WITH FINITIE ELEMENTS RESTORATION

Introductory remarks

Displacements analysis (Howard 1968a, and this
paper) is concerned with discovering functions (e.g.
Figs. 7, 8 and 9) that will return a deformed body to its
undeformed state or to a prior state of deformation.
Displacements analysis is, furthermore, related to
another approach to restorations on which we will now
comment: finite elements restorations (Oertel 1974,
Qertel & Ernst 1978, Cobbold 1979, Woodward et al.
1986). As explained below, differences as well as simi-
larities exist between these two approaches.

Differences and similarities in the approaches

The objective of the finite elements approach is the
restoration of individual elements of a cross-section with
good neighbor-to-neighbor contacts. Each element is
restored by non-rotational unstraining and subsequent
fitting of abutting boundaries (e.g. Fig. 6). Some appli-
cations of this method have included specific, post-
unstraining rigid body rotations of elements (e.g. Oertel
1974, p. 450). Oertel & Ernst (1978, pp. 87-99) provide
an example involving extensive element-by-element ad-
justments including rotations.

The critical technical problem for generating a solu-
tion using the finite elements approach is minimization
of mismatches between individually restored, neighbor-
ing elements. Cobbold (1979) observed that up to the
time of his publication “the fitting of elements. . . [had]
been done piecemeal and by hand” and proposed a
systematic procedure for improving on and measuring
the goodness of fit of elements. So far as we are aware
(see also Cobbold & Percevault 1983), however, the
approach still leads only to restorations with minimal
mismatches. Some mismatches are minor (Cobbold
1979, e.g. his fig. 5b), others significant (e.g. his fig. 6).
Ideally, the procedures should lead to ne mismatches
because of requirements of continuity and compatibility
in continuously deformed bodies. The displacements
approach has no mismatches; they are removed as part
of the technique for constructing the displacements
functions. An exception occurs in situations involving
faulting (Howard 1968c); then, discontinuities are
designed into the functions.

Furthermore, the finite elements approach typically
includes large, possibly unrealistic spatial gradients of
strain at the boundaries of elements. The displacements
approach leads to smooth, continuous functions and,
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therefore, smoothly and continuously varying strain.
We believe that such variations are more likely to have
developed naturally.

Although there are differences, there is an important,
fundamental similarity between the two approaches.
The restoration of individual finite elements involves
displacements of points of elements. The construction of
displacements functions is built, in large part, on infor-
mation about the displacements of selected points of
such restored finite elements, as explained above.

Additional features of the displacements approach

Two additional, attractive features of the displace-
ments approach are as follows. First, improvements to a
solution are fairly easy to make. This paper included an
example involving consideration of changes to the first-
pass displacements functions in order to make the upper
surface of the cross-section perfectly flat. Second, the
displacements vectors for the proposed functions pro-
vide insight into possible structural development
through time. Envisioning the retro-deformation dis-
placements functions as straight line vectors from the
undeformed state to present deformation permits this
insight. If we assume that the percentage-of-travel rate
along such vectors is the same for all vectors, we may
plot the change in shape of a surface through time.
Percentage-of-travel is the fraction of total displacement
realized at any time. The tips of the displacement vectors
at a time of interest would position a surface of interest
at that time. Figure 10, which is applicable to the
procedures explained thus far, shows the upper surface
of the cross-section at a time when half the total displace-
ment of vectors from that surface has occurred. Using a
selection of such surfaces (e.g. upper and lower surfaces
of the cross-section) and a series of increments of time,
one may construct an evolution of a deformed, continu-
Ous cross-section.

ONE-STEP VS MULTIPLE-STEP RETRO-
DEFORMATION

Introduction

Our solution to this point has concerned comparison
of two states of the material of the cross-section: present
deformed state vs a completely undeformed state. We
have not compared the present deformed state with one
or more prior deformed states. In this sense, our solu-
tions is ‘one-step’ and is typical of classical balancing
restorations (e.g. Tearpock & Bischke 1991, pp. 403~
419). The evolution of geologic structures often involves
identifiable multiple stages of deformation (e.g. Protz-
man & Mitra 1990). In this section, we discuss resto-
rations involving one identified intermediate stage of
deformation. We recognize still more complex situ-
ations involving multiple stages of deformation, involv-
ing addition or removal of mass to a system, and/or
involving faulting (i.e. discontinuous bodies; e.g. How-
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First-pass restoration

Present position

J. H. Howarp

Intermediate configuration

Fig. 10. Deformation of the cross-section from the first-pass restoration to the present deformation. The upper surface of
the section in an intermediate stage configuration is shown by heavy line. Vectors are those required for the restoration but
of opposite sign. Presumably half of the total movement on each vector has occurred at the same intermediate stage time.,

ard 1968c). These are outside the scope of the present
paper.

For situations involving an identified intermediate
stage, the key idea is as follows. An intermediate stage is
one to which a deformed state can be transformed; in
turn, an intermediate stage can be transformed to an
undeformed state. In this sense, the restoration is ‘in-
cremental’. The section from Woodward et al. (1986)
once again serves as an example. The displacements
approach can again be utilized and adapted to multi-step
retro-deformation.

Discussion of example of Reks & Gray (1983) and
Woodward et al. (1986)

Figure 9 implies that the strain ellipses posted on the
deformed cross-section were the consequence of trans-
forming flat-lying, unstrained strata to their present
deformed condition. However, an alternative possibility
exists, namely that reported values for strain are as a
consequence of the transformation of an a priori de-
formed state to present deformation.

Reks & Gray (1982), the original authors of the
section, drew the strain ellipses (Fig. 1) primarily from
observations of chlorite fringes on pyrite crystals. They
inferred that total fiber lengths record finite elongation
in the rock (p. 171) and that the straight fibers of the
fringes indicate coaxial deformation (p. 172). Reks &
Gray (1983) further report that as many pyrites as
possible were analyzed to check the similarity of strain
estimates. These carefully gathered data, which are
difficult to obtain and assess (e.g. Wickham 1973),
provide an opportunity to demonstrate an alternative
restoration as well as demonstrate the flexibility of the
displacements approach to restorations. This alternative
permits demonstration of a different technique to con-
struct displacements fields. It demonstrates the inclusion
of a specific, geologically hypothesized intermediate

stage of deformation and emphasizes that certain strain
indicators may record distinct increments of defor-
mation (Howard 1968a, p. 1849).

The Woodward et al.-Reks & Gray rules for resto-
ration to the configuration shown in Fig. 5 (bottom)
were as follows: first remove strains from individual
finite elements and second adjust the elements to match
‘face centers of adjacent elements (Reks & Gray 1983,
p. 119) (Fig. 6). Figure 15 from Reks & Gray (1983)
indicates, furthermore, that the elements were all
rotated so that the directions of greatest extension were
vertical. This restoration (slightly modified, see below)
is taken as a valid intermediate stage restoration through
which a complete restoration must pass.

In principle, the technique for restoration used in the
one-step solution could be applied. The orientations of
bedding at the intermediate stage of deformation would
not be flat but would be based on those of the intermedi-
ate stage fold (Fig. 5b.) There is, however, a direct
approach. The Woodward et al.-Reks & Gray resto-
ration permits graphical determination of displacements
of selected points. Figure 11 shows the cross-section in
present deformation superimposed on the Woodward
et al. —Reks & Gray intermediate stage restoration. (We
took the liberty of altering the third, fifth and seventh
clements to make them compatible with their neighbors.
Thus, Figs. 11 and 5 differ slightly.) The point (1,4) was
again used as the global reference point. Selected, hand-
measured vectors are shown on the figure. The vector
displacements of all corners of the finite elements (not
shown) were used to construct the displacement func-
tions in Fig 12.

There are no recorded strains indicative of transform-
ation from a flat bedded state to the intermediate state.
Nevertheless, from an intermediate restored state, we
may proceed to a completely undeformed state if we
define the configuration of the latter. There are several
reasonable choices, all with flat bedding. We chose to
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Fig. 11. Cross-section in present deformation superimposed on intermediate stage configuration based on an interpre-
tation by Reks & Gray (1982, 1983). Displacements of selected points only are shown. Elements 3, 5 and 7 (patterned) are
slightly modified from the original work (cf. fig. 5).

restore the intermediate stage to the form of a horizontal
rectangle with area equal to the area of the intermediate
stage cross-section. We put the lower left-hand corner of
the rectangle at the global origin. We set its height equal
to a thickness representative of the undeformed unit.
The cumulative length of the upper surface of the
intermediate stage section is about 2% shorter than its
equivalent line in the undeformed state. The lower
surface is slightly more than 3% longer. Accordingly,
using graphical (cf. computational) methods, we trans-
formed the bases and tops of each element to the
undeformed state. Tops were shortened 2%; bases,
elongated 3% . Figure 13 shows the results with selected
vectors of displacement. Displacements for all corner
points of elements were used to construct the displace-
ments functions shown in Fig. 14.
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Fig. 12. Displacements functions for the retro-deformation of the
present deformation to the configuration based on interpretation by
Reks & Gray (1982). Note the required large displacements in the +x
direction at the right-hand side of the section. Note also the need for
relative elevation of the central portion of the section.

Additional comments on one-step vs time-dependent
retro-deformation

Comparison of the one-step solution and the solution
incorporating an intermediate stage of deformation em-
phasizes a number of interesting points. First, the paths
of displacements for the two solutions clearly differ. The
combination of displacements shown in Figs. 12 and 14
do not yield the same paths for movement of points as
does the one-step solution (Figs. 7 and 8). Hence, there
are a number of ways to restore to an expected result,
e.g. to flat bedding. Second, the implications of ob-
served strain markers have to be carefully evaluated. A
one-step solution may be appropriate. However, the
chlorite fringes reported by Reks & Gray (1982, 1983)
call for a multiple-step solution. The inclusion of infor-
mation on various strain markers, including petro-
graphic markers as noted by Wickham (1973) and
Howard (1968a, pp. 1852-1853), should allow for more
definitive restorations when such data are available.

SUMMARIZING REMARKS

We have explained a one-step procedure for restoring
an unfaulted, variably strained cross-section. This pro-
cedure involves construction of retro-deformation dis-
placements functions which summarizes the movements
of points necessary to return—in one step—a strained,
folded section to its undeformed configuration. The
procedure has been successfully applied to a specific
example section assuming that observed strain recorded
transformation from an undeformed state to present
deformation.

An alternative interpretation of observed strain is
possible: observed strains indicate the transformation of
the section from an intermediate deformed state to
present deformation. The section may also be restored
in a manner addressing this possibility, but this pro-
cedure requires multiple steps. The first step in the
multiple step procedure was done by comparing the
movement of selected points from the present deformed
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1km

Fig. 13. Displacements of corner points of elements of the intermediate stage configuration to a completely undeformed
state. The rectangle to which the fold is transformed has the same area as the folded section but has a uniform height equal to
a thickness representative of the undeformed unit.
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Fig. 14. Retro-deformation displacements functions for the transformation from the intermediate to undeformed states.
Note upward movement with respect to the global reference point of the center of the folded layers but downward
movement at its right-hand side.

state to an intermediate, more-open but folded state as
originally proposed by Reks & Gray (1983). The second
step involves the movement of selected points from the
intermediate state to a particular undeformed configur-
ation with area equal to that of the intermediate state.
Each of these steps involves construction of sets of
appropriate retro-deformation functions, which sum-
marize movements needed to bring about full resto-
ration through a specific intermediate state of
deformation.

Acknowledgements—I1 wish to acknowledge reviews of two anony-
mous reviewers as well as JSG editor Professor Steven F. Wojtal. Each
of these individuals patiently read the original draft of this paper and
made specific suggestions for clarifying and enhancing it. I would also
like to remember with gratitude the late John W. Handin, who was
instrumental in providing me the initial opportunity to investigate
problems of this type when we were both ecmployed by Shell Develop-
ment Company.

REFERENCES

Cobbold, P. R. 1979. Removal of finitc deformation using strain
trajectories. J. Struct. Geol. 1, 67-72.

Cobbold, P. R. & Percevault, M.-N. 1983. Spatial integration of
strains using finite elements. J. Srruct. Geol. 5, 299-305.

Jaeger, J. C. 1956. Elasticity. Fracture. and Flow. Methuen & Co.,
London.

Hodgman, C. D. 1959. (" .R.C. Standard Mathematical Tables (12th
edn). Chemical Rubber Publishing, Cleveland, Ohio.

Howard, J. H. 1968a. The role of displacements in analytical structurai
geology. Bull. geol. Soc. Am. 79, 1846-1852.

Howard, J. H. 1968b. The use of transtormation constants in finite
homogencous strain analysis. Am J. Sci. 266, 497-506.

Howard, J. H. 1968c. Recent deformation at Buena Vista Hills,
California. Am. J. Sci. 266, 737-757.

Ocrtel. G. 1974. Unfolding of an antiform by the reversal of observed
strains. Bull. geol. Soc. Am. 88, 445-450).

Oertel. G. & Ernst, W. G. 1978. Strain and rotation in a multilayered
fold. Tectonophysics 48, 77-106.

Protzman. G. M. & Mitra. (. 1990. Strain fabric associated with the
Meade thrust sheet: implications for cross-section balancing. J.
Struct. Geol. 12, 403-417.

Ragan, D. M. 1973 Structural Geology—An Introduction to Geometri-
cal Technigues (2nd edn). John Wiley & Sons, New York.

Reks, I. J. & Gray, D. R. 1982. Pencil structure and strain in weakly
deformed mudstone and siltstone. J. Struct. Geol. 4, 161-176.

Reks, I. J. & Gray, D. R, 1983. Strain patterns and shortening in a
folded thrust sheet: an example from the southern Appalachian.
Tectonophysics 493, 93-128.

Tearpock, D. J. & Bischke. R. E. 1991. Applied Subsurface Geologi-
cal Mapping. Prentice-Hall. Englewood Cliffs, New Jersey.

Wickham. J. S. 1973. An cstimate of strain increments in a naturally
deformed carbonate rock. Am. J. Sci. 273, 23-47.

Woodward, N. B.. Gray. D. R. & Spears, D. B. 1986. lncluding strain
data in balanced cross-scctions. J. Struct. Geol. 8, 313-324.



