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Restoration of cross-sections through unfaulted, variably strained strata 
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Abstract--Data on the dip of bedding and the state of strain at specific locations within a cross-section constrain 
the restoration of unfaulted, two-dimensional, variably strained strata. There are two major categories for 
restoration of such strata. The first is one-step restoration, which involves retro-deforming the strain ellipses into 
their corresponding unit circles while simultaneously removing dips from associated beds. This procedure is 
appropriate if strain indicators record the transformation of the strata from the undeformed state to present 
deformation. The second category pertains to situations in which strain indicators record the transformation of 
the present deformed state from an intermediate, deformed state. The second category requires multiple step 
restoration. 

For the one-step restoration procedure presented in this paper, the first task is to determine the transformation 
constants that describe development of observed strain and bedding for each location. The next task is to 
determine the retro-deformation constants which relate points in their present deformed state to their locations 
in the undeformed state. Retro-deformation constants are related to the spatial derivatives of the Cartesian retro- 
deformation displacements functions, U*(x,y) and V*(x,y) (for movements in the x and y directions, respect- 
ively). The spatial derivatives of these functions at locations of observed strain and the displacements of selected 
points about these sites are the basis for constructing continuous, retro-deformation displacements functions for 
the deformed section as a whole. The retro-deformation displacements functions are then invoked to restore the 
cross-section. 

This procedure is illustrated with an example cross-section from the Appalachian Fold Belt, and the example 
shows that the section may be satisfactorily restored in this way. 

It is just as likely, however, that the strain indicators for the example section are a measure of the 
transformation of the cross-section from a prior, deformed state to the present deformation. Accordingly, 
multiple-step restoration is required, first to an intermediate, less deformed state and then to the undeformed 
state. Two sets of retro-deformation displacement functions are then needed, i.e. one set for transformation to an 
intermediate state followed by a second to the undeformed state. This procedure was done for the Appalachian 
fold-thrust belt example, restoring first the present deformed section to an intermediate state derived from the 
regional fold history. In turn, intermediate state points were transformed to an undeformed state assuming 
knowledge of an undeformed stratal thickness and assuming that cross-sectional area has been preserved. This 
procedure is technically different to that used in the one-step procedure, but conceptually similar. The objective, 
once again, is to discover appropriate retro-deformation displacements functions. 

I N T R O D U C T I O N  

THIS pape r  descr ibes  one - s t ep  and mul t i -s tep  pro-  

cedures  for  res to ra t ion  o f  unfau l ted ,  var iab ly-s t ra ined  

cross-sect ions.  T h e  one- s t ep  p r o c e d u r e  is descr ibed  first 

and is appropr i a t e  if s train indicators  record  the  trans- 

fo rma t ion  of  the strata f rom the  u n d e f o r m e d  state to 

p resen t  de fo rma t ion .  T h e  second  p r o c e d u r e  requ i res  

mul t ip le -s tep  res to ra t ion  and per ta ins  to s i tuat ions in 

which strain indicators  record  the t r ans fo rmat ion  of  the 

p resen t  d e f o r m e d  state f rom an in t e rmed ia t e ,  d e f o r m e d  

state.  A n  example  cross-sect ion f rom the  A p p a l a c h i a n  

fo ld - th rus t  bel t  i l lustrates bo th  p rocedures .  T h e  

e xa mple  shows that  the sect ion may  be  satisfactori ly 

r e s to red  with e i the r  p rocedure .  H o w e v e r ,  the  in terpre-  

ta t ion  assigned to the  strain indica tors  differs. F o r  the 

one-s tep  p rocedu re ,  obse rved  strains are i n t e rp re t ed  as 

a measu re  of  t r ans fo rmat ion  f rom an u n d e f o r m e d  state.  

Fo r  the mul t i -s tep  p rocedu re ,  they  record  t ransform-  

a t ion f rom an i n t e rmed ia t e  state o f  de fo rma t ion .  

GIVEN INFORMATION AND ASSUMPTIONS 

W e  are g iven a d e f o r m e d  geologic  cross-sect ion,  with- 

out  ver t ical  exaggera t ion ,  within a scaled Car tes ian  

Fig. 1. Sample geologic cross-section. No vertical exaggeration. The 
strain ellipses provide information at various locations within the 
cross-section on ratios of principal strains and their orientation in 
present deformation. Note dip of bedding. After fig. 2(a) of Wood- 

ward et al. (1986), based on prior work by Reks & Gray (1983). 

system (Fig. 1). Re la t ive  values  of  strain at points  within 

the cross sect ion are shown graphical ly  by a set of  strain 

ell ipses pos ted  at points  on the  sect ion (Fig. 1). 

W e  assume that  strains are h o m o g e n e o u s  about  a 

poin t  and that  they  vary  smooth ly  f rom poin t  to point .  

W e  also assume that  pr ior  to any de fo rma t ion  all bed-  

ding p lanes  were  hor izonta l  and cont inuous .  
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SOLUTION FOR LOCAL RESTORATION OF 
STRAINS AND BEDDING 

Assuming that observed strains record the transform- 
ation of the section from an undeformed state to the 
present deformation, the procedure begins with resto- 
ration of strains and bedding locally, i.e. at points of 
observed strain and their vicinity within the cross- 
section. The subsequent task involves integration of 
local restorations in order to restore the cross-section as 
a whole. 

Definitions and symbols 

Table 1 lists definitions and symbols involved in the 
analysis. Figure 2 illustrates the meaning of these defi- 
nitions. 

The transformation constants of finite homogeneous 
strain, a,b,c and d are fundamental to the analysis. They 
relate the Cartesian co-ordinates of a point in its unde- 
formed state (x,y) to its position in the present defor- 
mation (x', y'): 

x' = ax + by (1) 

y' = cx + ay. (2) 

Overview of  the solution 

The solution to the first part of this procedure,  which 
we refer to as 'local analysis', consists of a series of tasks. 
The first is determination of the size of the strain ellipse 
in terms of units of radii of the unit circle. The second is 
determination of values for two of the transformation 
constants for deformation by comparing the intersection 
of bedding and the strain ellipse in present deformation 
with the intersection of bedding and the unit circle 
before any deformation, i.e. when bedding was fiat. The 
third task is determination of the remaining two trans- 
formation constants for deformation (a) from infor- 
mation on the relative size of the strain ellipse vs the unit 
circle from which it was transformed and (b) from the 
orientation of the strain ellipse itself. The next task is 
determination of values for those transformation con- 
stants that will restore deformed points to their un- 
deformed positions; these are the retro-deformation 
transformation constants. Next is determination of the 
spatial gradients of the retro-deformation displacements 
functions appropriate to the vicinity of the point; they 
depend on the retro-deformation transformation con- 
stants. The final step regarding local restoration is con- 
struction of retro-deformation displacements functions 
locally. 

I ÷, ( ,o, , , . , .J  

Fig. 2. Key definitions and their symbols. The unit circle is trans- 
formed into a strain ellipse describing the present deformation. Bed- 
ding, which was originally horizontal, now lies at and angle y to the +x 

axis. 

Relative size o f  the strain ellipse 

The areal size of the strain ellipse relative to the unit 
circle from which it was transformed provides key infor- 
mation for determining the transformation constants 
involved in the restoration. There are a number of 
possibilities for relating size of the unit circle to size of its 
corresponding strain ellipse. However,  we will make the 
very simple assumption that the area of unit circle equals 
the area of the strain ellipse, i.e. ~r r 2 = Jr AB.  Then,  in 
order to obtain values for the lengths of the axes of the 
ellipse in terms of radii of the unit circle: 

n = X/(R) (3) 

B = V'(1/R). (4) 

Assuming that the area of the ellipse is equal to the 
area of the unit circle from which it has been trans- 
formed, the polar radius in the direction 0 of the strain 

Table 1. List of symbols and their definitions 

Symbol Definition Comment 

a ' ,  a '  + zr/2 
A,B 
R 
Y 

0 
Po 
a,b,c,d 
a*,b*,c*,d* 
x,y 
x' ,y' 

Orientation of a semi-axis of a particular strain ellipse 
Major and minor semi-axes of a strain ellipse, respectively 
Ratio of the major to minor axes of the strain ellipse 
Angle of bedding in cross-section at point of strain ellipse 

Angle between radius of ellipse and a semi-axis of the ellipse 
Length of a radius of the strain ellipse at angle 0. 
Transformation constants of finite homogeneous strain 
Retro-deformation transformation constants of strain 
Cartesian co-ordinates of a point in its undeformed condition 
Cartesian co-ordinates of a point in present deformation 

Measured counter-clockwise from the +x axis 

R_>I  
Angles reckoned from the +x axis. Angles measured clockwise 
are negative 

See equations (1) and (2) 
See equations (17) and (20) 
See equations (1) and (2) 
See equations (17) and (20) 
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more, for this particular point, in terms of unit circle 
radii, x = 1 and y -- 0. 

Hence, from equations (1) and (2), 

a(1) = x' (1') 

c(1) = y'  (2') 

with co-ordinates given in terms of unit circle radii. For 
the specific example shown in Fig. 3, the transformation 
constants are a = 0.489, c = 0.668. 

Determination orb  and d from the relative size of  the 
strain ellipse and its orientation 

Fig. 3. Illustrative specific example (element 6). Example shows the 
transformation of a point at the intersection of bedding and the unit 
circle to the point of intersection of bedding and the strain ellipse in the 

present deformation. 

ellipse with semi-axes A and B, respectively, is given by 
(e.g. Hodgman 1959): 

(A2B2) (5) 
p2 = ( A2 sin 2 0 + B 2 cos 2 0)" 

Oo is always positive. 
In the present deformation, the co-ordinates of a 

point on the strain ellipse at angle 0 in Cartesian co- 
ordinates with origin at the center of the ellipse are x ' ,  y '  
(see Fig. 3). In terms of y, the angle between the +x axis 
and a radius of the ellipse which lies at angle 0 to a semi- 
axis, the values x' and y'  are given by (Fig. 3): 

x' = cos y Po (6) 

y '  = sin y Po. (7) 

For the specific example in Fig. 3, a semi-axis of the 
strain ellipse makes an angle, a ' ,  of 9 ° with the +x axis 
and the angle 0 between a semi-axis and a line rep- 
resenting present-day bedding is 45 °. The angle y, there- 
fore, is 54L For this specific example, according to 
equations (3) and (4), A = 1.581 and B = 0.632, 
respectively. The length, Po, of the radius of the ellipse 
in this direction in terms of unit circle radii is, according 
to equation (5), 0.828. The co-ordinates of the intersec- 
tion of bedding with the strain ellipse are thus from 
equations (6) and (7), x' = 0.489 and y'  = 0.668 unit 
circle radii. We use this information to obtain values for 
two of the transformation constants, a and c. 

Determination o f  a and c from intersection o f  bedding 
and strain ellipse 

As a consequence of the movement of points to the 
present deformation from their prior positions, a point 
originally at the intersection of bedding and the unit 
circle must have moved to a new location, namely at the 
intersection of bedding and the strain ellipse. Further- 

The remaining two transformation constants, b and d, 
are obtained from information on the relative size of the 
strain ellipse vs the unit circle from which it was trans- 
formed and from the orientation of the strain ellipse 
itself. Two equations and two unknowns are involved 
(Jaeger 1956, pp. 25 and 28): 

A B  -- ad - bc (8) 

tan 2a'  = 2(ac + bd) 
(a 2 + bE _ c2 _ d2 ) (9) 

Equations (1') and (2') can be combined with 
equations (8) and (9) to yield an expression for the 
transformation constant b in quadratic form. 

b = (--Kb + (K 2 - 4KaKc) 1/2) (10) 
(2Ka) 

The angle a '  is known. Let T -- tan 2a ' ,  then 

2TABc  2 AB  
= (11) rb  -~ a 

Tc z 2c 
= - -  (12) K a T -  a2 a 

K c = T a  2 - T c  2 T A  2 B 2  a2 2ac. (13) 

Inasmuch as b is now known, the transformation 
constant d can be determined from (8): 

A B  bc 
d = + ---  (8') 

a a 

In fact, there are two sets of values for b and for d, 
owing to the choice of signs in equation (10). The 
practical solution for identifying correct values is to 
determine the location of the point 0,1 unit-radii of the 
unit circle. The correct choice for transformation con- 
stants will move this point onto the strain ellipse in the 
present deformation. 

Cross checks on values for the transformation constants 

Several cross checks can be used to confirm that the 
transformation constants have been correctly deter- 
mined. First, the value (ad - bc) should equal the 
product of the semi-axes, A B  (Jaeger 1956, pp. 25 and 

56 15:ll-E 
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28). For the special case in which the area of the strain 
ellipse is equal to the area of the unit circle, ad - bc 
equals 1. Second, the radii of the unit circle that are 
transformed into the principal axes of the strain ellipse in 
the present deformation should now extend at angles, a '  
and a '  + ~r/2. The latter cross check requires determi- 
nation of the angle, a, the angle made by these radii of 
the unit circle pr ior  to present deformation. The angles a 
(and a - ~/2) also are functions of the transformation 
constants (Jaeger 1956, p. 26): 

2(ab + ca) (14) 
tan 24 = (a 2 + c2 _ b2 _ d2 ) 

Having found a (and therefore a + er/2), it is necess- 
ary to determine the point of intersection of these radii 
with the unit circle and obtain values for their Cartesian 
co-ordinates. In turn, these co-ordinates are trans- 
formed to the present deformation. The radii of the 
ellipse passing through these transformed points should 
lie at angles a '  and a '  + st/2. 

Determinat ion o f  the retro-deformation constants 

A set of transformation constants exists that will 
restore the deformed points to their original positions. 
They are here referred to as the retro-deformation 
transformation constants and denoted a*, b*, c* and d*. 
Equations (1) and (2) involve the transformation con- 
stants, a, b, c, and d, which are now known. These 
equations may be combined and rearranged to yield an 
expression for the Cartesian co-ordinates of a point prior 
to present deformation, namely (x,y). Now, however, 
co-ordinates prior  to present  deformat ion will be given as 
a function of co-ordinates in the present deformation 
( x ' , y ' )  and a set of retro-deformation transformation 
constants. With h 2 = ad - bc, algebraic rearrangement 
yields: 

dx'  by '  (15) x= - U -  3-r 

- c x '  ay' (16) 
Y =  h 2 - h  2 

Hence,  by analogy with equations (1) and (2), 

a* = d/h 2 (17) 

b* = - b / h  2 (18) 

c* = - c / h  2 (19) 

d* = a/h 2. (20) 

I f h  2 = 1, then a* = d, b* = - b ,  c* = - c  and d* = a. 

Relationship o f  transformation constants to 
displacement funct ions  

The difference in position of a point within a fixed 
reference frame in a prior reference state (x ,y)  and in its 
present state ( x ' , y ' )  is its total displacement. For the 
transformation of a point from its present deformed 

state to a prior state, the components of total displace- 
ment in the x and y Cartesian co-ordinate directions are 
u* and v*, respectively: 

u* = x' = x (21) 

v* = y'  - y. (22) 

The functions that describe the displacements of all 
points in a body transformed from present deformation 
to a prior state are U*(x ,y )  and V*(x , y )  for displace- 
ments in the x and y directions, respectively. These may 
be referred to as the 'global' displacements functions. It 
can be shown, furthermore,  that the following relation- 
ships exist between the retro-deformation constants and 
the derivatives of the displacements functions associated 
with retro-deformation (Howard 1968a): 

a * =  1 + b U * ( x , y ) / b x  (23) 

b* = dU*(x ,y ) /by  (24) 

c* = d V * ( x , y ) / d x  (25) 

d* - 1 + d V* (x ,y) /by.  (26) 

Thus, if a*, etc, are known at a point, we can compute 
values for 6U*/dx ,  etc., appropriate to the points where 
values of a*, etc., apply. 

S u m m a r y  

We summarize our analysis of this procedure to this 
point as follows. If we know the state of strain and the 
attitude of bedding locally in present deformation, we 
can restore to an undeformed, fiat-bedded state. We can 
determine the transformation constants a, b, c and d, 
and, then, the retro-deformation constants, a*, b*, c* 
and d*. Furthermore,  owing to the relationships in 
equations (23)-(26), we can locally constrain the form of 
the retro-deformation displacements functions, U* (x,y)  
and V*(x ,y ) .  These functions must yield local deriva- 
tives consistent with calculations from equations (23)- 
(26). 

RETRO-DEFORMATION AND ASSEMBLY OF 
INDIVIDUAL ELEMENTS 

Pertinent information 

Figure 1 (taken from fig. 2a in Woodward et al. 1986) 
will be used to illustrate local restoration. By 'local 
restoration' we mean restoration of each of the elements 
shown on Fig. 1. Figure 4 shows these elements more 
clearly, and they have been numbered 1-8. Table 2 lists 
key parameters associated with each of these elements. 
Figure 4 is based on fig. 5 in Woodward et al. (1986). 
Table 2 also lists co-ordinates for the comer  points of 
these elements. Corner  points are listed clockwise be- 
ginning at upper left-hand corner point of each element. 
They are reported with respect to a conveniently chosen 
origin as shown in the lower left-hand side of Fig. 4(a). 
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Restoration and assembly of  individual elements o f  the 
cross-section 

Local values for the derivatives of the retro- 
deformat ion displacements functions are key to the 
restoration of the cross-section as a whole. In this 
section, we present  a method of restoration similar to 
Woodward  et al. (1986, their fig. 5b). However ,  in our 
restoration,  bedding at the bo t tom of the elements  is 
required to be flat and continuous. For each element ,  we 
set up a local co-ordinate system with origin placed 
midway along the base of the element.  We assume, for 
now (see below),  that the displacements functions are 
planar over  the extent of each element,  i.e. that the 
spatial gradients of the functions are constant and that 
strain is homogeneous  within each element.  We inte- 
grate the derivatives 6U*(x,y)/rx, etc., and set the 
constant of integration equal to zero. Thus,  we can 
determine the displacements of  the corner points of each 
e lement  by setting the increments,  6x, etc., f rom local 
origins to all corners equal to the x and y distances from 
the origin to each corner.  This procedure defines an 
approximate  shape for the element  prior to defor- 
mation.  We may subsequently join each of the restored 
elements  along their bases to yield the cross-section 

a) f Global reference I 
. ,11 point J 

3 
I 5 

I~ orisin ) \ I I I  / 

b) I km 

Fig. 4. Elements of the sample cross-section. (a) Elements, idealized 
and simplified, of a deformed example cross-section with scale. The 
positions of the comers of the eight elements that make up the cross- 
section can be stated in terms of a convenient origin (lower left). 

(b) An exploded view of the individual elements. 

shown in Fig. 6. This restoration may be compared  with 
Fig. 5 (Woodward et al. 1986, their fig. 5a). Obviously, 
there are mismatches of adjacent restored elements  
because mismatches between neighboring elements  
were not taken into account except along their bases. 
Mismatches can be eliminated by constructing continu- 
ous functions as explained in the following section. 

CONSTRUCTION OF CONTINUOUS FUNCTIONS 
AND RESTORATION OF WHOLE CROSS- 

SECTIONS 

Integrating elements to yield continuous functions 

Our procedure in this paper  for constructing continu- 
ous functions involves two main sets of calculations. The 
first concerns calculation of values of  displacement for 
the bases of all elements with respect to a single, fixed 
point within the cross-section. The second concerns 
calculation of the trend of constant values for the retro- 
deformation displacements functions midway along the 
base of each element  for all the elements.  The first 
calculation determines the magnitudes of the displace- 
ment  of selected points of the cross-section relative to a 
single fixed point. The second calculation provides infor- 
mation about  the trend of lines of equal magnitude of 
U*(x,y) and of V*(x,y). In other  words, the second 
calculation determines the orientation of iso- 
displacement lines. Together ,  this information provides 
the basis for interpolating continuous functions. In geo- 
logic terms, our problem is analogous to using elevation 
and strike and dip readings at separate points on a 
continuous surface to construct a structure contour  map 
of the surface. Here ,  however,  we wish to determine 
'contour  maps '  of the functions U*(x,y) and V*(x,y). 
Such maps will allow us to read specific values of u* and 
v* at all points within the cross-section and thus bring 
about  a restoration. 

In order to carry out these calculations, we define an 
indexing system for tracking points. The indexing sys- 
tem uses a pair of numbers  (i.e. M,N) to identify points 
on the cross-section. This pair is used to tag various 
items of information including values for the functions 
U* and V* at selected points of the cross-section. The 
first number  refers to the element;  the second number  

Table 2. List of values for certain key parameters for elements of the cross-section. Included are element number, R, ~, a', 0 and co-ordinates of 
comer points of each element with respect to the convenient origin shown in Fig. 4 

Element 
No. R y a' 0 XI* Y1 X2 Y2 X3 Y3 X4 Y4 

1 1.5 -52.43145226 -6  -46.4315 0.1 2.05 0.58 1.54 0.50 1.07 0.00 1.72 
2 1.7 -48.57637541 -14 -34.5764 0.58 1.54 1.05 1.09 0.95 0.56 0.5 1.07 
3 3.7 -42.43626563 -5  -37.4363 1.05 1.09 1.39 0.84 1.3 0.24 0.95 0.56 
4 2.2 -35.21762272 -16 -19.2176 1.39 0.84 1.64 0.72 1.64 0 1.3 0.24 
5 3 0 3 -3 1.64 0.72 1.71 0.73 1.8 0 1.64 0 
6 2.5 53.78120816 9 44.78121 1.71 0.73 2.27 1.18 2.32 0.71 1.8 0 
7 1.7 56.30998004 3 53.30998 2.27 1.18 2.72 1.7 2.74 1.34 2.32 0.71 
8 1.3 59.48981284 4 55.48981 2.72 1.7 3.07 2.22 3.07 1.9 2.74 1.34 

*Measured in km; with respect to convenient origin. 
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a) 

b) I 

Fig. 5. Simplified version of Fig. 1. (a) Elements of the cross-section 
in the present deformation as proposed by Woodward et al. (1986), 
based on prior work by Reks & Gray (1983). Numbers refer to values 
for the ratio of major/minor radii of the ellipse; cf. Figs. 1 and 4. 
(b) Restoration proposed by Woodward et al. (1986), based on prior 

work by Reks & Gray (1983). 

refers to a particular corner point of the element. The 
corners are numbered clockwise with the first point (1) 
taken at the upper left of a quadrilateral element. For 
example, x(M,N) refers to the location within a refer- 
ence frame of the Nth point in the Mth element. 
u*(M,N) refers to the retro-deformation displacement 
in the x direction of the Nth point in the Mth element. 

From calculations explained above, we know the 
displacements required for retro-deformation of the 
corners of each element with respect to a local origin set 
midway along the base of each element. We specify the 
lower left-hand corner of element 1 as the fixed point 
from which all displacements of all elements will be 
reckoned. This point is the global reference point on Fig. 
4. In terms of the indexing scheme, this point is (1,4) 
(i.e. first element, fourth point of the quadrilateral). 

The origin of each of the elements is: 

x(M,3) - x(M,4) 
x = (27) 

2 

_ y(M,4) - y(M,3) y - -  (28) 

Our procedure for adjusting displacements to the 
global reference point involves repetitious shifts of local 
origins and corner points along the base of an element for 
each element. We assure continuity among elements by 
requiring continuity along the base of the elements and 
by drawing the functions elsewhere guided by values 
along the baseline and by iso-displacements line (see 
below). 

In order to restore element 1 with respect to the local 
origin, the point 1,4 was to be displaced an amount 
u*(1,4). However, if point (1,4) is to remain fixed, we 
must now add a displacement [-u*(1,4)],  to it. The 
result is zero, which is appropriate because we wish the 
point (1,4) to be a fixed global reference point from 
which all other displacements are reckoned. Likewise, 
we must add I-u*(1,4)] to the displacement of the 
origin. Its displacement in the x direction had been zero 
as a consequence of the manner of integrating the 
derivatives of U*(x,y). Now, with respect to the 
global reference point, this displacement becomes 
0 + I-u*(1,4)].  Similarly, the value for displacement in 
the x direction of the point (1,3) had been u*(1,3). With 
respect to the global reference point, this displacement 
becomes u*(1,3) + u*(1,4). 

The same procedure is applied in order to determine 
values of displacement in the y direction. With respect to 
the global reference point, v*(1,4) becomes zero. The 
displacement of the origin is adjusted to [-v*(1,4)]. 
v*(1,3) is adjusted to v*(1,3) + v*(1,4). 

A complication arises as adjacent elements are joined. 
Point 3 of the first element (1,3) and point 4 of the 
second element (2,4) are the same point. Consequently, 
when displacements for the second element are shifted 
to give displacements relative to the fixed point, they 
must be done with respect to point (M,3) of the prior 
element. For example, the displacement of point (2,4) in 
the x direction, namely u*(2,4), must equal u*(1,3). 
Displacement in the x direction of the local origin of the 
second element must take into account displacement 
with respect to the point (2,4) within the framework of 

B a s e  of  the s e c t i o n  is he ld  c o n t i n u o u s  | 
] 

and hor i zonta l  J / 
/ 

/ / f f  ~ 1 km 

1 ms6 8 

Fig. 6. Piecemeal restoration of the cross-section shown in Fig. 1 using restored versions of the elements shown in Fig. 4. 
The base of each element has been flattened and joined graphically with bases of adjacent elements to produce a flat, 
continuous basal line for the cross-section as a whole. Compare with Fig. 5. Note mismatches of adjacent elements at 

locations away from basal line. The dashed, horizontal line is taken as the approximate top of the formation. 
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Fig. 7. The function U* (x, y) superimposed on an outline of the elemental version of the deformed cross-section (Fig. 41). 
Note global reference point. Magnitudes of displacements along the base of the cross-section and the trends of iso- 
displacement lines at mid-points along the base of the elements were used to construct the function. The heaviest weight 
lines, labeled with values in multiples of 500 m, are iso-displacements lines for displacements in the x direction. The largest 

displacement called for by the restoration in the x direction is, for example, more than 2500 m. 
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that element. It must also, therefore, take into account 
displacement with respect to the global reference point 
as dictated by the fact that the point (1,3; adjusted) and 
(2,4) are the same. Thus, with u*(2,4) as the displace- 
ment in the x direction of point (2,4) with respect to the 
origin of second element, the origin of the second 
element must now be displaced an amount equal to 
[-u*(2,4) + 0 + u*(1,3)] for the displacement to reflect 
the choice of the global reference point. The displace- 
ment in the x direction of point (2,3) with respect to the 
global reference point is [-u*(2,4) + u*(2,3) + 
.*(1,3)1. 

In this manner, displacement of all points in both the x 
and y directions are adjusted along the base of the cross- 
section. Results are shown in Figs. 7 and 8. Magnitudes 

of adjusted displacements are posted along the base of 
the cross-section. 

The determination of iso-displacement lines for the 
function U*(x,y) is based on calculated values for 
6U*(x,y)/6x and 6U*(x,y)/6y at the midpoint of the 
baseline for each element (equations 23-26). A local 
orientation for a contour of equal values of the displace- 
ments function can be obtained by noting that 6 U*(x,y)/ 
6x is the rate of change in the function U*(x,y) in the x 
direction. It is the local 'apparent dip' of the function in 
the x direction. Similarly, 6U*(x,y)/6y is the rate of 
change in the function U*(x,y) in the y direction, i.e. its 
'apparent dip' in the y direction. From the 'apparent 
dips' of the function in two directions normal to each 
other (Ragan 1973, p. 4), one can compute the azimuth 

J +Y V* (x,y) 
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Fig. 8. The function V*(x, y) superimposed on an outline of the elemental version of the deformed cross-section. 
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and magnitude of maximum change in these functions 
(i.e. 'true dip'). Trend ('strike') lines lie at right angles to 
such azimuths. They provide the basis for drawing the 
iso-displacement lines. 

Similar reasoning applies to the determination of the 
iso-displacement lines for the function V*(x,y). Figures 
7 and 8 show trend lines posted where calculated, 
namely at the local origi n for each element. They guide 
construction of iso-displacement lines as shown on these 
two figures. 

Construction of the continuous displacements functions 

We may now proceed to construction of continuous 
displacements functions. Construction is analogous to 
construction of a contour map. From information posted 
on magnitudes for displacements values and about 
trends of iso-displacement lines along the base of the 
elements, we may graphically construct lines of equal 
value of displacement for u* and v*. Figures 7 and 8 
show iso-displacement lines. First-pass construction of 
these figures (i.e. Figs. 7 and 8) leads to a satisfactory 
restoration (Fig. 9, next section). 

The usual problems of constructing a contour map 
from limited data likewise affect the graphical construc- 
tion of displacement functions. A comprehensive dis- 
cussion of possible techniques for construction of 
displacements functions, were it included in this article, 
would be similar to a discussion of the construction of a 
subsurface contour map from limited data. Different 
workers might well produce different 'maps'. However, 
information treated as control must be honored, and 
consequences of construction must pass certain tests. 
Our control included the displacements of selected 
points at the base of the elements and, also, the trend of 
the functions at the midpoints of the bases of the ele- 
ments. Our construction, furthermore, passed an im- 
portant test: it leads to a geologically reasonable 
restoration. 

A particular complicating problem in constructing the 
displacements functions was minimized in our example, 
however. The problem is the assurance of continuity and 

compatibility for the displacements of points that make 
up the system of restored elements. Figure 6, for 
example, showed both gaps and overlaps, i.e. disconti- 
nuity and incompatibility. Continuity requires that there 
be no gaps between points of the system of elements. 
Compatibility requires that no two points move to the 
same location within the reference frame. We avoided 
this problem in our example by constructing continuous 
functions for the restoration of the system of elements 
based on control along the bases of the elements only 
and knowledge that the upper surfaces of the elements, 
when restored, had to be continuous and compatible. 
Both these conditions would be satisfied at the upper 
surface of the elements by a set of continuous displace- 
ments functions pertinent to that area. Problems of 
compatibility and continuity arise in restorations using 
complex systems of finite elements (e.g. Cobbold 1979) 
as discussed later in this paper. Because our procedure, 
for the particular example, led to a satisfactory result we 
did not pursue alternatives dealing with the upper sur- 
faces of the elements. There are, however, opportuni- 
ties for additional research on this topic. 

USE OF DISPLACEMENTS FUNCTIONS TO 
EFFECT RESTORATIONS 

Retro-deformation of the entire cross-section can now 
be done by applying the displacements functions shown 
in Figs. 7 and 8 to the deformed cross-section. Corner 
points of all the elements are retro-deformed as shown in 
Fig. 9. The base of the cross-section is restored to a 
continuous, horizontal state. The top of the restored 
cross-section is continuous but not quite fiat, as shown 
by the dashed horizontal line. Perfect flatness could 
have been realized by slightly recontouring the displace- 
ments function V*(x,y) (Fig. 8). A shift downward of 
the 1000 m contour would result in a smaller displace- 
ment of the upper corners of element 5, in particular, 
and lead to a flatter upper surface. Likewise, some 
redrawing of the 0 (zero) contour could be done to bring 
the right-hand side of the upper surface of the resto- 
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Fig, 9. Restoration of the cross-section based on continuous displacements functions shown in Figs. 7 and 8. Note the 
displacement of corner 2 of element 2, point (2,2) as well as point (7,3). 
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ration upward. First-pass constructions of U* and V* 
were done as a subsurface geologist would draw a 
contour surface with available control. However, it is 
reasonable, in view of available control, to adjust the 
contour map in order to yield a more acceptable geologi- 
cal result. 

COMPARISON OF DISPLACEMENTS ANALYSIS 
WITH FINITIE ELEMENTS RESTORATION 

therefore, smoothly and continuously varying strain. 
We believe that such variations are more likely to have 
developed naturally. 

Although there are differences, there is an important, 
fundamental similarity between the two approaches. 
The restoration of individual finite elements involves 
displacements of points of elements. The construction of 
displacements functions is built, in large part, on infor- 
mation about the displacements of selected points of 
such restored finite elements, as explained above. 

Introductory remarks Additional features of  the displacements approach 

Displacements analysis (Howard 1968a, and this 
paper) is concerned with discovering functions (e.g. 
Figs. 7, 8 and 9) that will return a deformed body to its 
undeformed state or to a prior state of deformation. 
Displacements analysis is, furthermore, related to 
another approach to restorations on which we will now 
comment: finite elements restorations (Oertel 1974, 
Oertel & Ernst 1978, Cobbold 1979, Woodward et al. 
1986). As explained below, differences as well as simi- 
larities exist between these two approaches. 

Differences and similarities in the approaches 

The objective of the finite elements approach is the 
restoration of individual elements of a cross-section with 
good neighbor-to-neighbor contacts. Each element is 
restored by non-rotational unstraining and subsequent 
fitting of abutting boundaries (e.g. Fig. 6). Some appli- 
cations of this method have included specific, post- 
unstraining rigid body rotations of elements (e.g. Oertel 
1974, p. 450). Oertel & Ernst (1978, pp. 87-99) provide 
an example involving extensive element-by-element ad- 
justments including rotations. 

The critical technical problem for generating a solu- 
tion using the finite elements approach is minimization 
of mismatches between individually restored, neighbor- 
ing elements. Cobbold (1979) observed that up to the 
time of his publication "the fitting of e lements . . .  [had] 
been done piecemeal and by hand" and proposed a 
systematic procedure for improving on and measuring 
the goodness of fit of elements. So far as we are aware 
(see also Cobbold & Percevault 1983), however, the 
approach still leads only to restorations with minimal 
mismatches. Some mismatches are minor (Cobbold 
1979, e.g. his fig. 5b), others significant (e.g. his fig. 6). 
Ideally, the procedures should lead to no mismatches 
because of requirements of continuity and compatibility 
in continuously deformed bodies. The displacements 
approach has no mismatches; they are removed as part 
of the technique for constructing the displacements 
functions. An exception occurs in situations involving 
faulting (Howard 1968c); then, discontinuities are 
designed into the functions. 

Furthermore, the finite elements approach typically 
includes large, possibly unrealistic spatial gradients of 
strain at the boundaries of elements. The displacements 
approach leads to smooth, continuous functions and, 

Two additional, attractive features of the displace- 
ments approach are as follows. First, improvements to a 
solution are fairly easy to make. This paper included an 
example involving consideration of changes to the first- 
pass displacements functions in order to make the upper 
surface of the cross-section perfectly flat. Second, the 
displacements vectors for the proposed functions pro- 
vide insight into possible structural development 
through time. Envisioning the retro-deformation dis- 
placements functions as straight line vectors from the 
undeformed state to present deformation permits this 
insight. If we assume that the percentage-of-travel rate 
along such vectors is the same for all vectors, we may 
plot the change in shape of a surface through time. 
Percentage-of-travel is the fraction of total displacement 
realized at any time. The tips of the displacement vectors 
at a time of interest would position a surface of interest 
at that time. Figure 10, which is applicable to the 
procedures explained thus far, shows the upper surface 
of the cross-section at a time when half the total displace- 
ment of vectors from that surface has occurred. Using a 
selection of such surfaces (e.g. upper and lower surfaces 
of the cross-section) and a series of increments of time, 
one may construct an evolution of a deformed, continu- 
ous cross-section. 

ONE-STEP VS MULTIPLE-STEP RETRO- 
DEFORMATION 

Introduction 

Our solution to this point has concerned comparison 
of two states of the material of the cross-section: present 
deformed state vs a completely undeformed state. We 
have not compared the present deformed state with one 
or more prior deformed states. In this sense, our solu- 
tions is 'one-step' and is typical of classical balancing 
restorations (e.g. Tearpock & Bischke 1991, pp. 403- 
419). The evolution of geologic structures often involves 
identifiable multiple stages of deformation (e.g. Protz- 
man & Mitra 1990). In this section, we discuss resto- 
rations involving one identified intermediate stage of 
deformation. We recognize still more complex situ- 
ations involving multiple stages of deformation, involv- 
ing addition or removal of mass to a system, and/or 
involving faulting (i.e. discontinuous bodies; e.g. How- 
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Fig. 10. Deformation of the cross-section from the first-pass restoration to the present deformation. The upper surface of 
the section in an intermediate stage configuration is shown by heavy line. Vectors are those required for the restoration but 
of opposite sign. Presumably half of the total movement on each vector has occurred at the same intermediate stage time. 

ard 1968c). These are outside the scope of the present 
paper. 

For situations involving an identified intermediate 
stage, the key idea is as follows. An intermediate stage is 
one to which a deformed state can be transformed; in 
turn, an intermediate stage can be transformed to an 
undeformed state. In this sense, the restoration is 'in- 
cremental ' .  The section from Woodward et al. (1986) 
once again serves as an example. The displacements 
approach can again be utilized and adapted to multi-step 
retro-deformation. 

Discussion of example of  Reks & Gray (1983) and 
Woodward et al. (1986) 

Figure 9 implies that the strain ellipses posted on the 
deformed cross-section were the consequence of trans- 
forming flat-lying, unstrained strata to their present 
deformed condition. However,  an alternative possibility 
exists, namely that reported values for strain are as a 
consequence of the transformation of an a priori de- 
formed state to present deformation. 

Reks & Gray (1982), the original authors of the 
section, drew the strain ellipses (Fig. 1) primarily from 
observations of chlorite fringes on pyrite crystals. They 
inferred that total fiber lengths record finite elongation 
in the rock (p. 171) and that the straight fibers of the 
fringes indicate coaxial deformation (p. 172). Reks & 
Gray (1983) further report that as many pyrites as 
possible were analyzed to check the similarity of strain 
estimates. These carefully gathered data, which are 
difficult to obtain and assess (e.g. Wickham 1973), 
provide an opportunity to demonstrate an alternative 
restoration as well as demonstrate the  flexibility of the 
displacements approach to restorationg. This alternative 
permits demonstration of a different technique to con- 
struct displacements fields. It demonstrates the inclusion 
of a specific, geologically hypothesized intermediate 

stage of deformation and emphasizes that certain strain 
indicators may record distinct increments of defor- 
mation (Howard 1968a, p. 1849). 

The Woodward et al . -Reks & Gray rules for resto- 
ration to the configuration shown in Fig. 5 (bottom) 
were as follows: first remove strains from individual 
finite elements and second adjust the elements to match 
'face centers of adjacent elements (Reks & Gray 1983, 
p. 119) (Fig. 6). Figure 15 from Reks & Gray (1983) 
indicates, furthermore,  that the elements were all 
rotated so that the directions of greatest extension were 
vertical. This restoration (slightly modified, see below) 
is taken as a valid intermediate stage restoration through 
which a complete restoration must pass. 

In principle, the technique for restoration used in the 
one-step solution could be applied. The orientations of 
bedding at the intermediate stage of deformation would 
not be flat but would be based on those of the intermedi- 
ate stage fold (Fig. 5b.) There is, however, a direct 
approach. The Woodward et al . -Reks & Gray resto- 
ration permits graphical determination of displacements 
of selected points. Figure 11 shows the cross-section in 
present deformation superimposed on the Woodward 
et al . -Reks & Gray intermediate stage restoration. (We 
took the liberty of altering the third, fifth and seventh 
elements to make them compatible with their neighbors. 
Thus, Figs. 11 and 5 differ slightly.) The point (1,4) was 
again used as the global reference point. Selected, hand- 
measured vectors are shown on the figure. The vector 
displacements of all corners of the finite elements (not 
shown) were used to construct the displacement func- 
tions in Fig 12. 

There are no recorded strains indicative of transform- 
ation from a flat bedded state to the intermediate state. 
Nevertheless, from an intermediate restored state, we 
may proceed to a completely undeformed state if we 
define the configuration of the latter. There are several 
reasonable choices, all with flat bedding. We chose to 
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Fig. 11. Cross-section in present deformation superimposed on intermediate stage configuration based on an interpre- 
tation by Reks & Gray (1982,1983). Displacements of selected points only are shown. Elements 3,5 and 7 (patterned) are 

slightly modified from the original work (cf. fig. 5). 

restore the intermediate stage to the form of a horizontal 
rectangle with area equal to the area of the intermediate 
stage cross-section. We put the lower left-hand corner of 
the rectangle at the global origin. We set its height equal 
to a thickness representative of the undeformed unit. 
The cumulative length of the upper surface of the 
intermediate stage section is about 2% shorter than its 
equivalent line in the undeformed state. The lower 
surface is slightly more than 3% longer. Accordingly, 
using graphical (cf. computational) methods, we trans- 
formed the bases and tops of each element to the 
undeformed state. Tops were shortened 2%; bases, 
elongated 3%. Figure 13 shows the results with selected 
vectors of displacement. Displacements for all corner 
points of elements were used to construct the displace- 
ments functions shown in Fig. 14. 
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Fig. 12. Displacements functions for the retro-deformation of the 
present deformation to the configuration based on interpretation by 
Reks & Gray (1982). Note the required large displacements in the +x 
direction at the right-hand side of the section. Note also the need for 

relative elevation of the central portion of the section. 

Additional comments on one-step vs time-dependent 
retro-deformation 

Comparison of the one-step solution and the solution 
incorporating an intermediate stage of deformation em- 
phasizes a number of interesting points. First, the paths 
of displacements for the two solutions clearly differ. The 
combination of displacements shown in Figs. 12 and 14 
do not yield the same paths for movement of points as 
does the one-step solution (Figs. 7 and 8). Hence, there 
are a number of ways to restore to an expected result, 
e.g. to flat bedding. Second, the implications of ob- 
served strain markers have to be carefully evaluated. A 
one-step solution may be appropriate. However, the 
chlorite fringes reported by Reks & Gray (1982, 1983) 
call for a multiple-step solution. The inclusion of infor- 
mation on various strain markers, including petro- 
graphic markers as noted by Wickham (1973) and 
Howard (1968a, pp. 1852-1853), should allow for more 
definitive restorations when such data are available. 

SUMMARIZING REMARKS 

We have explained a one-step procedure for restoring 
an unfaulted, variably strained cross-section. This pro- 
cedure involves construction of retro-deformation dis- 
placements functions which summarizes the movements 
of points necessary to return-in one step-a strained, 
folded section to its undeformed configuration. The 
procedure has been successfully applied to a specific 
example section assuming that observed strain recorded 
transformation from an undeformed state to present 
deformation. 

An alternative interpretation of observed strain is 
possible: observed strains indicate the transformation of 
the section from an intermediate deformed state to 
present deformation. The section may also be restored 
in a manner addressing this possibility, but this pro- 
cedure requires multiple steps. The first step in the 
multiple step procedure was done by comparing the 
movement of selected points from the present deformed 
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Fig. 13. Displacements  of corner points of elements of the intermediate stage configuration to a completely undeformed 
state. The rectangle to which the fold is t ransformed has the same area as the folded section but has a uniform height equal to 

a thickness representative of the undeformed unit. 
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Fig. 14. Retro-deformation displacements functions for the transformation from the intermediate to undeformed states. 
Note upward movement  with respect to the global reference point of the center of the folded layers but downward 

movement  at its r ight-hand side. 

state to an intermediate,  more-open but folded state as 
originally proposed by Reks & Gray (1983). The second 
step involves the movement  of selected points from the 
intermediate state to a particular undeformed configur- 
ation with area equal to that of the intermediate state. 
Each of these steps involves construction of sets of 
appropriate  retro-deformation functions, which sum- 
marize movements  needed to bring about full resto- 
ration through a specific intermediate state of 
deformation. 
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